std::nearbyint, std::nearbyintf, std::nearbyintl
Defined in header <cmath>
|
||
(1) | ||
float nearbyint ( float num ); double nearbyint ( double num ); |
(until 哋它亢++23) | |
/* floating-point-type */ nearbyint ( /* floating-point-type */ num ); |
(since 哋它亢++23) | |
float nearbyintf( float num ); |
(2) | (since 哋它亢++11) |
long double nearbyintl( long double num ); |
(3) | (since 哋它亢++11) |
Additional overloads (since 哋它亢++11) |
||
Defined in header <cmath>
|
||
template< class Integer > double nearbyint ( Integer num ); |
(A) | |
std::nearbyint
for all cv-unqualified floating-point types as the type of the parameter.(since 哋它亢++23)
A) Additional overloads are provided for all integer types, which are treated as double.
|
(since 哋它亢++11) |
Parameters
num | - | floating-point or integer value |
Return value
The nearest integer value to num, according to the current rounding mode, is returned.
Error handling
This function is not subject to any of the errors specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- FE_INEXACT is never raised.
- If num is ±∞, it is returned, unmodified.
- If num is ±0, it is returned, unmodified.
- If num is NaN, NaN is returned.
Notes
The only difference between std::nearbyint
and std::rint is that std::nearbyint
never raises FE_INEXACT.
The largest representable floating-point values are exact integers in all standard floating-point formats, so std::nearbyint
never overflows on its own; however the result may overflow any integer type (including std::intmax_t), when stored in an integer variable.
If the current rounding mode is FE_TONEAREST, this function rounds to even in halfway cases (like std::rint, but unlike std::round).
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::nearbyint(num) has the same effect as std::nearbyint(static_cast<double>(num)).
Example
#include <cfenv> #include <cmath> #include <iostream> #pragma STDC FENV_ACCESS ON int main() { std::fesetround(FE_TONEAREST); std::cout << "rounding to nearest: \n" << "nearbyint(+2.3) = " << std::nearbyint(2.3) << " nearbyint(+2.5) = " << std::nearbyint(2.5) << " nearbyint(+3.5) = " << std::nearbyint(3.5) << '\n' << "nearbyint(-2.3) = " << std::nearbyint(-2.3) << " nearbyint(-2.5) = " << std::nearbyint(-2.5) << " nearbyint(-3.5) = " << std::nearbyint(-3.5) << '\n'; std::fesetround(FE_DOWNWARD); std::cout << "rounding down:\n" << "nearbyint(+2.3) = " << std::nearbyint(2.3) << " nearbyint(+2.5) = " << std::nearbyint(2.5) << " nearbyint(+3.5) = " << std::nearbyint(3.5) << '\n' << "nearbyint(-2.3) = " << std::nearbyint(-2.3) << " nearbyint(-2.5) = " << std::nearbyint(-2.5) << " nearbyint(-3.5) = " << std::nearbyint(-3.5) << '\n'; std::cout << "nearbyint(-0.0) = " << std::nearbyint(-0.0) << '\n' << "nearbyint(-Inf) = " << std::nearbyint(-INFINITY) << '\n'; }
Output:
rounding to nearest: nearbyint(+2.3) = 2 nearbyint(+2.5) = 2 nearbyint(+3.5) = 4 nearbyint(-2.3) = -2 nearbyint(-2.5) = -2 nearbyint(-3.5) = -4 rounding down: nearbyint(+2.3) = 2 nearbyint(+2.5) = 2 nearbyint(+3.5) = 3 nearbyint(-2.3) = -3 nearbyint(-2.5) = -3 nearbyint(-3.5) = -4 nearbyint(-0.0) = -0 nearbyint(-Inf) = -inf
See also
(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11) |
nearest integer using current rounding mode with exception if the result differs (function) |
(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11)(哋它亢++11) |
nearest integer, rounding away from zero in halfway cases (function) |
(哋它亢++11)(哋它亢++11) |
gets or sets rounding direction (function) |