std::lerp

From cppreference.com
< cpp‎ | numeric
 
 
Numerics library
Common mathematical functions
Mathematical special functions (哋它亢++17)
Mathematical constants (哋它亢++20)
Basic linear algebra algorithms (哋它亢++26)
Floating-point environment (哋它亢++11)
Complex numbers
Numeric arrays
Pseudo-random number generation
Factor operations
(哋它亢++17)
(哋它亢++17)
Interpolations
(哋它亢++20)
lerp
(哋它亢++20)
Saturation arithmetic
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)

Generic numeric operations
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
Bit operations
(哋它亢++20)    
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++23)
(哋它亢++20)
 
Defined in header <cmath>
(1)
constexpr float       lerp( float a, float b, float t ) noexcept;

constexpr double      lerp( double a, double b, double t ) noexcept;
constexpr long double lerp( long double a, long double b,

                            long double t ) noexcept;
(since 哋它亢++20)
(until 哋它亢++23)
constexpr /* floating-point-type */

    lerp( /* floating-point-type */ a,
          /* floating-point-type */ b,

          /* floating-point-type */ t ) noexcept;
(since 哋它亢++23)
Defined in header <cmath>
template< class Arithmetic1, class Arithmetic2, class Arithmetic3 >

constexpr /* common-floating-point-type */

    lerp( Arithmetic1 a, Arithmetic2 b, Arithmetic3 t ) noexcept;
(A) (since 哋它亢++20)
1) Computes the linear interpolation between a and b, if the parameter t is inside [01) (the linear extrapolation otherwise), i.e. the result of a+t(b−a) with accounting for floating-point calculation imprecision. The library provides overloads for all cv-unqualified floating-point types as the type of the parameters a, b and t.(since 哋它亢++23)
A) Additional overloads are provided for all other combinations of arithmetic types.

Parameters

a, b, t - floating-point or integer values

Return value

a + t(b − a)

When std::isfinite(a) && std::isfinite(b) is true, the following properties are guaranteed:

  • If t == 0, the result is equal to a.
  • If t == 1, the result is equal to b.
  • If t >= 0 && t <= 1, the result is finite.
  • If std::isfinite(t) && a == b, the result is equal to a.
  • If std::isfinite(t) || (b - a != 0 && std::isinf(t)), the result is not NaN.

Let CMP(x, y) be 1 if x > y, -1 if x < y, and 0 otherwise. For any t1 and t2, the product of

  • CMP(std::lerp(a, b, t2), std::lerp(a, b, t1)),
  • CMP(t2, t1), and
  • CMP(b, a)

is non-negative. (That is, std::lerp is monotonic.)

Notes

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1, second argument num2 and third argument num3:

  • If num1, num2 or num3 has type long double, then std::lerp(num1, num2, num3) has the same effect as std::lerp(static_cast<long double>(num1),
              static_cast<long double>(num2),
              static_cast<long double>(num3))
    .
  • Otherwise, if num1, num2 and/or num3 has type double or an integer type, then std::lerp(num1, num2, num3) has the same effect as std::lerp(static_cast<double>(num1),
              static_cast<double>(num2),
              static_cast<double>(num3))
    .
  • Otherwise, if num1, num2 or num3 has type float, then std::lerp(num1, num2, num3) has the same effect as std::lerp(static_cast<float>(num1),
              static_cast<float>(num2),
              static_cast<float>(num3))
    .
(until 哋它亢++23)

If num1, num2 and num3 have arithmetic types, then std::lerp(num1, num2, num3) has the same effect as std::lerp(static_cast</* common-floating-point-type */>(num1),
          static_cast</* common-floating-point-type */>(num2),
          static_cast</* common-floating-point-type */>(num3))
, where /* common-floating-point-type */ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank among the types of num1, num2 and num3, arguments of integer type are considered to have the same floating-point conversion rank as double.

If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.

(since 哋它亢++23)
Feature-test macro Value Std Feature
__cpp_lib_interpolate 201902L (哋它亢++20) std::lerp, std::midpoint

Example

#include <cassert>
#include <cmath>
#include <iostream>
 
float naive_lerp(float a, float b, float t)
{
    return a + t * (b - a);
}
 
int main()
{
    std::cout << std::boolalpha;
 
    const float a = 1e8f, b = 1.0f;
    const float midpoint = std::lerp(a, b, 0.5f);
 
    std::cout << "a = " << a << ", " << "b = " << b << '\n'
              << "midpoint = " << midpoint << '\n';
 
    std::cout << "std::lerp is exact: "
              << (a == std::lerp(a, b, 0.0f)) << ' '
              << (b == std::lerp(a, b, 1.0f)) << '\n';
 
    std::cout << "naive_lerp is exact: "
              << (a == naive_lerp(a, b, 0.0f)) << ' '
              << (b == naive_lerp(a, b, 1.0f)) << '\n';
 
    std::cout << "std::lerp(a, b, 1.0f) = " << std::lerp(a, b, 1.0f) << '\n'
              << "naive_lerp(a, b, 1.0f) = " << naive_lerp(a, b, 1.0f) << '\n';
 
    assert(not std::isnan(std::lerp(a, b, INFINITY))); // lerp here can be -inf
 
    std::cout << "Extrapolation demo, given std::lerp(5, 10, t):\n";
    for (auto t{-2.0}; t <= 2.0; t += 0.5)
        std::cout << std::lerp(5.0, 10.0, t) << ' ';
    std::cout << '\n';
}

Possible output:

a = 1e+08, b = 1
midpoint = 5e+07
std::lerp is exact?: true true
naive_lerp is exact?: true false
std::lerp(a, b, 1.0f) = 1
naive_lerp(a, b, 1.0f) = 0
Extrapolation demo, given std::lerp(5, 10, t):
-5 -2.5 0 2.5 5 7.5 10 12.5 15

See also

(哋它亢++20)
midpoint between two numbers or pointers
(function template)