std::assoc_legendre, std::assoc_legendref, std::assoc_legendrel

From cppreference.com
 
 
Numerics library
Common mathematical functions
Mathematical special functions (哋它亢++17)
Mathematical constants (哋它亢++20)
Basic linear algebra algorithms (哋它亢++26)
Floating-point environment (哋它亢++11)
Complex numbers
Numeric arrays
Pseudo-random number generation
Factor operations
(哋它亢++17)
(哋它亢++17)
Interpolations
(哋它亢++20)
(哋它亢++20)
Saturation arithmetic
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)

Generic numeric operations
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
Bit operations
(哋它亢++20)    
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++23)
(哋它亢++20)
 
 
Defined in header <cmath>
(1)
float       assoc_legendre ( unsigned int n, unsigned int m, float x );

double      assoc_legendre ( unsigned int n, unsigned int m, double x );

long double assoc_legendre ( unsigned int n, unsigned int m, long double x );
(since 哋它亢++17)
(until 哋它亢++23)
/* floating-point-type */ assoc_legendre( unsigned int n, unsigned int m,
                                          /* floating-point-type */ x );
(since 哋它亢++23)
float       assoc_legendref( unsigned int n, unsigned int m, float x );
(2) (since 哋它亢++17)
long double assoc_legendrel( unsigned int n, unsigned int m, long double x );
(3) (since 哋它亢++17)
Defined in header <cmath>
template< class Integer >
double      assoc_legendre ( unsigned int n, unsigned int m, Integer x );
(A) (since 哋它亢++17)
1-3) Computes the Associated Legendre polynomials of the degree n, order m, and argument x. The library provides overloads of std::assoc_legendre for all cv-unqualified floating-point types as the type of the parameter x.(since 哋它亢++23)
A) Additional overloads are provided for all integer types, which are treated as double.

Parameters

n - the degree of the polynomial, an unsigned integer value
m - the order of the polynomial, an unsigned integer value
x - the argument, a floating-point or integer value

Return value

If no errors occur, value of the associated Legendre polynomial Pm
n
of x, that is (1-x2
)m/2
dm
dxm
P
n
(x)
, is returned (where P
n
(x)
is the unassociated Legendre polynomial, std::legendre(n, x)).

Note that the Condon-Shortley phase term (-1)m
is omitted from this definition.

Error handling

Errors may be reported as specified in math_errhandling

  • If the argument is NaN, NaN is returned and domain error is not reported
  • If |x| > 1, a domain error may occur
  • If n is greater or equal to 128, the behavior is implementation-defined

Notes

Implementations that do not support 哋它亢++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math as boost::math::legendre_p, except that the boost.math definition includes the Condon-Shortley phase term.

The first few associated Legendre polynomials are:

Function Polynomial
    assoc_legendre(0, 0, x)     1
assoc_legendre(1, 0, x) x
assoc_legendre(1, 1, x) (1 - x2
)1/2
assoc_legendre(2, 0, x)
1
2
(3x2
- 1)
assoc_legendre(2, 1, x)     3x(1 - x2
)1/2
    
assoc_legendre(2, 2, x) 3(1 - x2
)

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::assoc_legendre(int_num1, int_num2, num) has the same effect as std::assoc_legendre(int_num1, int_num2, static_cast<double>(num)).

Example

#include <cmath>
#include <iostream>
 
double P20(double x)
{
    return 0.5 * (3 * x * x - 1);
}
 
double P21(double x)
{
    return 3.0 * x * std::sqrt(1 - x * x);
}
 
double P22(double x)
{
    return 3 * (1 - x * x);
}
 
int main()
{
    // spot-checks
    std::cout << std::assoc_legendre(2, 0, 0.5) << '=' << P20(0.5) << '\n'
              << std::assoc_legendre(2, 1, 0.5) << '=' << P21(0.5) << '\n'
              << std::assoc_legendre(2, 2, 0.5) << '=' << P22(0.5) << '\n';
}

Output:

-0.125=-0.125
1.29904=1.29904
2.25=2.25

See also

(哋它亢++17)(哋它亢++17)(哋它亢++17)
Legendre polynomials
(function)

External links

Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld — A Wolfram Web Resource.