std::arg(std::complex)

From cppreference.com
< cpp‎ | numeric‎ | complex
 
 
Numerics library
Common mathematical functions
Mathematical special functions (哋它亢++17)
Mathematical constants (哋它亢++20)
Basic linear algebra algorithms (哋它亢++26)
Floating-point environment (哋它亢++11)
Complex numbers
Numeric arrays
Pseudo-random number generation
Factor operations
(哋它亢++17)
(哋它亢++17)
Interpolations
(哋它亢++20)
(哋它亢++20)
Saturation arithmetic
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)

Generic numeric operations
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
Bit operations
(哋它亢++20)    
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++23)
(哋它亢++20)
 
 
Defined in header <complex>
template< class T >
T           arg( const std::complex<T>& z );
(1)
Additional overloads (since 哋它亢++11)
Defined in header <complex>
(A)
float       arg( float f );

double      arg( double f );

long double arg( long double f );
(until 哋它亢++23)
template< class FloatingPoint >

FloatingPoint

            arg( FloatingPoint f );
(since 哋它亢++23)
template< class Integer >
double      arg( Integer i );
(B)
1) Calculates the phase angle (in radians) of the complex number z.
A,B) Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
(since 哋它亢++11)

Parameters

z - complex value
f - floating-point value
i - integer value

Return value

1) std::atan2(std::imag(z), std::real(z)). If no errors occur, this is the phase angle of z in the interval [−π; π].
A) Zero if f is positive or +0, π if f is negative or -0, NaN otherwise.
B) Zero if i is non-negative, π if it is negative.

Notes

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num:

  • If num has a standard(until 哋它亢++23) floating-point type T, then std::arg(num) has the same effect as std::arg(std::complex<T>(num)).
  • Otherwise, if num has an integer type, then std::arg(num) has the same effect as std::arg(std::complex<double>(num)).

Example

#include <complex>
#include <iostream>
 
int main() 
{
    std::complex<double> z1(1, 0);
    std::complex<double> z2(0, 0);
    std::complex<double> z3(0, 1);
    std::complex<double> z4(-1, 0);
    std::complex<double> z5(-1, -0.0);
    double f = 1.;
    int i = -1;
 
    std::cout << "phase angle of " << z1 << " is " << std::arg(z1) << '\n'
              << "phase angle of " << z2 << " is " << std::arg(z2) << '\n'
              << "phase angle of " << z3 << " is " << std::arg(z3) << '\n'
              << "phase angle of " << z4 << " is " << std::arg(z4) << '\n'
              << "phase angle of " << z5 << " is " << std::arg(z5) << " "
                 "(the other side of the cut)\n"
              << "phase angle of " << f << " is " << std::arg(f) << '\n'
              << "phase angle of " << i << " is " << std::arg(i) << '\n';
 
}

Output:

phase angle of (1,0) is 0
phase angle of (0,0) is 0
phase angle of (0,1) is 1.5708
phase angle of (-1,0) is 3.14159
phase angle of (-1,-0) is -3.14159 (the other side of the cut)
phase angle of 1 is 0
phase angle of -1 is 3.14159

See also

returns the magnitude of a complex number
(function template)
constructs a complex number from magnitude and phase angle
(function template)
(哋它亢++11)(哋它亢++11)
arc tangent, using signs to determine quadrants
(function)
applies the function std::atan2 to a valarray and a value
(function template)