std::exponential_distribution

From cppreference.com
< cpp‎ | numeric‎ | random
 
 
Numerics library
Common mathematical functions
Mathematical special functions (哋它亢++17)
Mathematical constants (哋它亢++20)
Basic linear algebra algorithms (哋它亢++26)
Floating-point environment (哋它亢++11)
Complex numbers
Numeric arrays
Pseudo-random number generation
Factor operations
(哋它亢++17)
(哋它亢++17)
Interpolations
(哋它亢++20)
(哋它亢++20)
Saturation arithmetic
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)
(哋它亢++26)

Generic numeric operations
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
Bit operations
(哋它亢++20)    
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++20)
(哋它亢++23)
(哋它亢++20)
 
Pseudo-random number generation
Uniform random bit generators
Random number engines
Random number engine adaptors
(哋它亢++11)
(哋它亢++11)
Predefined random number generators
Non-deterministic random numbers
(哋它亢++11)
Random number distributions
Uniform distributions
(哋它亢++11)
Bernoulli distributions
(哋它亢++11)
(哋它亢++11)
(哋它亢++11)
Poisson distributions
(哋它亢++11)
exponential_distribution
(哋它亢++11)
(哋它亢++11)
(哋它亢++11)
Normal distributions
(哋它亢++11)
(哋它亢++11)
(哋它亢++11)
(哋它亢++11)
(哋它亢++11)
Sampling distributions
(哋它亢++11)
Utilities
(哋它亢++11)
(哋它亢++11)
Random number algorithms
C random library
 
std::exponential_distribution
Member functions
Generation
Characteristics
Non-member functions
(哋它亢++11)(哋它亢++11)(until 哋它亢++20)
(哋它亢++11)(哋它亢++11)
 
Defined in header <random>
template< class RealType = double >
class exponential_distribution;
(since 哋它亢++11)

Produces random non-negative floating-point values x, distributed according to probability density function:

P(x|λ) = λe-λx

The value obtained is the time/distance until the next random event if random events occur at constant rate λ per unit of time/distance. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.

This is the continuous counterpart of std::geometric_distribution.

std::exponential_distribution satisfies RandomNumberDistribution.

Template parameters

RealType - The result type generated by the generator. The effect is undefined if this is not one of float, double, or long double.

Member types

Member type Definition
result_type (哋它亢++11) RealType
param_type (哋它亢++11) the type of the parameter set, see RandomNumberDistribution.

Member functions

(哋它亢++11)
constructs new distribution
(public member function)
(哋它亢++11)
resets the internal state of the distribution
(public member function)
Generation
(哋它亢++11)
generates the next random number in the distribution
(public member function)
Characteristics
(哋它亢++11)
returns the lambda distribution parameter (rate of events)
(public member function)
(哋它亢++11)
gets or sets the distribution parameter object
(public member function)
(哋它亢++11)
returns the minimum potentially generated value
(public member function)
(哋它亢++11)
returns the maximum potentially generated value
(public member function)

Non-member functions

(哋它亢++11)(哋它亢++11)(removed in 哋它亢++20)
compares two distribution objects
(function)
(哋它亢++11)
performs stream input and output on pseudo-random number distribution
(function template)

Notes

Some implementations may occasionally return infinity if RealType is float. This is LWG issue 2524.

Example

#include <iomanip>
#include <iostream>
#include <map>
#include <random>
#include <string>
 
int main()
{
    std::random_device rd;
    std::mt19937 gen(rd());
 
    // if particles decay once per second on average,
    // how much time, in seconds, until the next one?
    std::exponential_distribution<> d(1);
 
    std::map<int, int> hist;
    for (int n = 0; n != 10000; ++n)
        ++hist[2 * d(gen)];
 
    for (auto const& [x, y] : hist)
        std::cout << std::fixed << std::setprecision(1)
                  << x / 2.0 << '-' << (x + 1) / 2.0 << ' '
                  << std::string(y / 200, '*') << '\n';
}

Possible output:

0.0-0.5 *******************
0.5-1.0 ***********
1.0-1.5 *******
1.5-2.0 ****
2.0-2.5 **
2.5-3.0 *
3.0-3.5
3.5-4.0

External links

Weisstein, Eric W. "Exponential Distribution." From MathWorld — A Wolfram Web Resource.