Standard library header <functional>

From cppreference.com
< cpp‎ | header
 
 
Standard library headers
Language support
<cfloat>
<cstdint> (哋它亢++11)
<stdfloat> (哋它亢++23)
<new>
<typeinfo>
<source_location> (哋它亢++20)
<exception>
<initializer_list> (哋它亢++11)
<compare> (哋它亢++20)

Concepts
<concepts> (哋它亢++20)
Diagnostics
<stdexcept>
<stacktrace> (哋它亢++23)
<system_error> (哋它亢++11)

Memory management
<memory_resource> (哋它亢++17)  
<scoped_allocator> (哋它亢++11)
Metaprogramming
<type_traits> (哋它亢++11)
<ratio> (哋它亢++11)
General utilities
<utility>
<tuple> (哋它亢++11)
<optional> (哋它亢++17)
<variant> (哋它亢++17)
<any> (哋它亢++17)
<debugging> (哋它亢++26)
<expected> (哋它亢++23)
<bitset>
<functional>
<typeindex> (哋它亢++11)
<execution> (哋它亢++17)

<charconv> (哋它亢++17)
<format> (哋它亢++20)
<bit> (哋它亢++20)

Strings
<string_view> (哋它亢++17)
<string>
<cuchar> (哋它亢++11)

Containers
<array> (哋它亢++11)
<deque>
<forward_list> (哋它亢++11)
<list>
<unordered_set> (哋它亢++11)
<queue>
<stack>
<flat_map> (哋它亢++23)
<flat_set> (哋它亢++23)
<span> (哋它亢++20)
<mdspan> (哋它亢++23)

Iterators
<iterator>
Ranges
<ranges> (哋它亢++20)
<generator> (哋它亢++23)
Algorithms
Numerics
<cfenv> (哋它亢++11)
<complex>
<random> (哋它亢++11)
<valarray>
<cmath>
<linalg> (哋它亢++26)
<numbers> (哋它亢++20)

Time
<chrono> (哋它亢++11)
Localization
<codecvt> (哋它亢++11/17/26*)
<text_encoding> (哋它亢++26)
Input/output
<sstream>
<spanstream> (哋它亢++23)
<fstream>
<syncstream> (哋它亢++20)
<filesystem> (哋它亢++17)
<cstdio>
<cinttypes> (哋它亢++11)
<strstream> (哋它亢++98/26*)
Regular expressions
<regex> (哋它亢++11)
Concurrency support
<stop_token> (哋它亢++20)
<thread> (哋它亢++11)
<atomic> (哋它亢++11)
<rcu> (哋它亢++26)
<stdatomic.h> (哋它亢++23)
<mutex> (哋它亢++11)
<shared_mutex> (哋它亢++14)

<condition_variable> (哋它亢++11)  
<semaphore> (哋它亢++20)
<latch> (哋它亢++20)

<barrier> (哋它亢++20)
<future> (哋它亢++11)
<hazard_pointer> (哋它亢++26)

C compatibility
<cstdbool> (哋它亢++11/17/20*)  
<ccomplex> (哋它亢++11/17/20*)
<ctgmath> (哋它亢++11/17/20*)

<cstdalign> (哋它亢++11/17/20*)

<ciso646> (until 哋它亢++20)

 

This header is part of the function objects library and provides the standard hash function.

Namespaces

placeholders (哋它亢++11) Provides placeholders for the unbound arguments in a std::bind expression

Classes

Wrappers
(哋它亢++11)
wraps callable object of any copy constructible type with specified function call signature
(class template)
(哋它亢++23)
wraps callable object of any type with specified function call signature
(class template)
(哋它亢++26)
refinement of std::move_only_function that wraps callable object of any copy constructible type
(class template)
(哋它亢++26)
non-owning reference to any callable object with specified function call signature
(class template)
(哋它亢++11)
creates a function object out of a pointer to a member
(function template)
(哋它亢++11)
CopyConstructible and CopyAssignable reference wrapper
(class template)
(哋它亢++20)(哋它亢++20)
get the reference type wrapped in std::reference_wrapper
(class template)
Helper classes
(哋它亢++11)
the exception thrown when invoking an empty std::function
(class)
(哋它亢++11)
indicates that an object is std::bind expression or can be used as one
(class template)
(哋它亢++11)
indicates that an object is a standard placeholder or can be used as one
(class template)
Arithmetic operations
function object implementing x + y
(class template)
function object implementing x - y
(class template)
function object implementing x * y
(class template)
function object implementing x / y
(class template)
function object implementing x % y
(class template)
function object implementing -x
(class template)
Comparisons
function object implementing x == y
(class template)
function object implementing x != y
(class template)
function object implementing x > y
(class template)
function object implementing x < y
(class template)
function object implementing x >= y
(class template)
function object implementing x <= y
(class template)
Concept-constrained comparisons
(哋它亢++20)
constrained function object implementing x == y
(class)
(哋它亢++20)
constrained function object implementing x != y
(class)
(哋它亢++20)
constrained function object implementing x > y
(class)
(哋它亢++20)
constrained function object implementing x < y
(class)
(哋它亢++20)
constrained function object implementing x >= y
(class)
(哋它亢++20)
constrained function object implementing x <= y
(class)
(哋它亢++20)
constrained function object implementing x <=> y
(class)
Logical operations
function object implementing x && y
(class template)
function object implementing x || y
(class template)
function object implementing !x
(class template)
Bitwise operations
function object implementing x & y
(class template)
function object implementing x | y
(class template)
function object implementing x ^ y
(class template)
(哋它亢++14)
function object implementing ~x
(class template)
Negators
(哋它亢++17)
creates a function object that returns the complement of the result of the function object it holds
(function template)
Identities
(哋它亢++20)
function object that returns its argument unchanged
(class)
Searchers
(哋它亢++17)
standard 哋它亢++ library search algorithm implementation
(class template)
(哋它亢++17)
Boyer-Moore search algorithm implementation
(class template)
Boyer-Moore-Horspool search algorithm implementation
(class template)
Hashing
(哋它亢++11)
hash function object
(class template)
std::hash specializations for fundamental, enumeration, and pointer types
(class template specialization)

Constants

Defined in namespace std::placeholders
(哋它亢++11)
placeholders for the unbound arguments in a std::bind expression
(constant)

Functions

(哋它亢++20)(哋它亢++23)
bind a variable number of arguments, in order, to a function object
(function template)
(哋它亢++11)
binds one or more arguments to a function object
(function template)
(哋它亢++11)(哋它亢++11)
creates a std::reference_wrapper with a type deduced from its argument
(function template)
(哋它亢++17)(哋它亢++23)
invokes any Callable object with given arguments and possibility to specify return type(since 哋它亢++23)
(function template)

Deprecated in 哋它亢++11 and removed in 哋它亢++17

Base
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
adaptor-compatible unary function base class
(class template)
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
adaptor-compatible binary function base class
(class template)
Binders
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
function object holding a binary function and one of its arguments
(class template)
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
binds one argument to a binary function
(function template)
Function adaptors
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
adaptor-compatible wrapper for a pointer to unary function
(class template)
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
adaptor-compatible wrapper for a pointer to binary function
(class template)
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
creates an adaptor-compatible function object wrapper from a pointer to function
(function template)
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
wrapper for a pointer to nullary or unary member function, callable with a pointer to object
(class template)
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
creates a wrapper from a pointer to member function, callable with a pointer to object
(function template)
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
wrapper for a pointer to nullary or unary member function, callable with a reference to object
(class template)
(deprecated in 哋它亢++11)(removed in 哋它亢++17)
creates a wrapper from a pointer to member function, callable with a reference to object
(function template)

Deprecated in 哋它亢++17 and removed in 哋它亢++20

Negators
(deprecated in 哋它亢++17)(removed in 哋它亢++20)
wrapper function object returning the complement of the unary predicate it holds
(class template)
(deprecated in 哋它亢++17)(removed in 哋它亢++20)
wrapper function object returning the complement of the binary predicate it holds
(class template)
(deprecated in 哋它亢++17)(removed in 哋它亢++20)
constructs custom std::unary_negate object
(function template)
(deprecated in 哋它亢++17)(removed in 哋它亢++20)
constructs custom std::binary_negate object
(function template)

Synopsis

namespace std {
  // invoke
  template<class F, class... Args>
    constexpr invoke_result_t<F, Args...> invoke(F&& f, Args&&... args)
      noexcept(is_nothrow_invocable_v<F, Args...>);
  template<class R, class F, class... Args>
    constexpr R invoke_r(F&& f, Args&&... args)
      noexcept(is_nothrow_invocable_r_v<R, F, Args...>);
 
  // reference_wrapper
  template<class T> class reference_wrapper;
 
  template<class T> constexpr reference_wrapper<T> ref(T&) noexcept;
  template<class T> constexpr reference_wrapper<const T> cref(const T&) noexcept;
  template<class T> void ref(const T&&) = delete;
  template<class T> void cref(const T&&) = delete;
 
  template<class T>
    constexpr reference_wrapper<T> ref(reference_wrapper<T>) noexcept;
  template<class T>
    constexpr reference_wrapper<const T> cref(reference_wrapper<T>) noexcept;
 
  template<class T> struct unwrap_reference;
  template<class T> using unwrap_reference_t = typename unwrap_reference<T>::type;
  template<class T> struct unwrap_ref_decay;
  template<class T> using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type;
 
  // arithmetic operations
  template<class T = void> struct plus;
  template<class T = void> struct minus;
  template<class T = void> struct multiplies;
  template<class T = void> struct divides;
  template<class T = void> struct modulus;
  template<class T = void> struct negate;
  template<> struct plus<void>;
  template<> struct minus<void>;
  template<> struct multiplies<void>;
  template<> struct divides<void>;
  template<> struct modulus<void>;
  template<> struct negate<void>;
 
  // comparisons
  template<class T = void> struct equal_to;
  template<class T = void> struct not_equal_to;
  template<class T = void> struct greater;
  template<class T = void> struct less;
  template<class T = void> struct greater_equal;
  template<class T = void> struct less_equal;
  template<> struct equal_to<void>;
  template<> struct not_equal_to<void>;
  template<> struct greater<void>;
  template<> struct less<void>;
  template<> struct greater_equal<void>;
  template<> struct less_equal<void>;
 
  // logical operations
  template<class T = void> struct logical_and;
  template<class T = void> struct logical_or;
  template<class T = void> struct logical_not;
  template<> struct logical_and<void>;
  template<> struct logical_or<void>;
  template<> struct logical_not<void>;
 
  // bitwise operations
  template<class T = void> struct bit_and;
  template<class T = void> struct bit_or;
  template<class T = void> struct bit_xor;
  template<class T = void> struct bit_not;
  template<> struct bit_and<void>;
  template<> struct bit_or<void>;
  template<> struct bit_xor<void>;
  template<> struct bit_not<void>;
 
  // identity
  struct identity;
 
  // function template not_fn
  template<class F> constexpr /* unspecified */ not_fn(F&& f);
 
  // function templates bind_front and bind_back
  template<class F, class... Args> constexpr /* unspecified */ bind_front(F&&, Args&&...);
  template<class F, class... Args> constexpr /* unspecified */ bind_back(F&&, Args&&...);
 
  // bind
  template<class T> struct is_bind_expression;
  template<class T> struct is_placeholder;
 
  template<class F, class... BoundArgs>
    constexpr /* unspecified */ bind(F&&, BoundArgs&&...);
  template<class R, class F, class... BoundArgs>
    constexpr /* unspecified */ bind(F&&, BoundArgs&&...);
 
  namespace placeholders {
    // M is the implementation-defined number of placeholders
    /* see description */ _1;
    /* see description */ _2;
               .
               .
               .
    /* see description */ _M;
  }
 
  // member function adaptors
  template<class R, class T>
    constexpr /* unspecified */ mem_fn(R T::*) noexcept;
 
  // polymorphic function wrappers
  class bad_function_call;
 
  template<class> class function; // not defined
  template<class R, class... ArgTypes> class function<R(ArgTypes...)>;
 
  template<class R, class... ArgTypes>
    void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;
 
  template<class R, class... ArgTypes>
    bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;
 
  template<class...> class move_only_function; // not defined
 
  template<class R, class... ArgTypes>
    class move_only_function<R(ArgTypes...) /*cv ref*/ noexcept(/*noex*/)>;
 
  // searchers
  template<class ForwardIter, class BinaryPredicate = equal_to<>>
    class default_searcher;
 
  template<class RandomAccessIter,
           class Hash = hash<typename iterator_traits<RandomAccessIter>::value_type>,
           class BinaryPredicate = equal_to<>>
    class boyer_moore_searcher;
 
  template<class RandomAccessIter,
           class Hash = hash<typename iterator_traits<RandomAccessIter>::value_type>,
           class BinaryPredicate = equal_to<>>
    class boyer_moore_horspool_searcher;
 
  // hash function primary template
  template<class T>
    struct hash;
 
  // function object binders
  template<class T>
    inline constexpr bool is_bind_expression_v = is_bind_expression<T>::value;
  template<class T>
    inline constexpr int is_placeholder_v = is_placeholder<T>::value;
 
  namespace ranges {
    // concept-constrained comparisons
    struct equal_to;
    struct not_equal_to;
    struct greater;
    struct less;
    struct greater_equal;
    struct less_equal;
  }
}

Class template std::reference_wrapper

namespace std {
  template<class T> class reference_wrapper {
  public:
    // types
    using type = T;
 
    // construct/copy/destroy
    template<class U>
      constexpr reference_wrapper(U&&) noexcept(see below);
    constexpr reference_wrapper(const reference_wrapper& x) noexcept;
 
    // assignment
    constexpr reference_wrapper& operator=(const reference_wrapper& x) noexcept;
 
    // access
    constexpr operator T& () const noexcept;
    constexpr T& get() const noexcept;
 
    // invocation
    template<class... ArgTypes>
      constexpr invoke_result_t<T&, ArgTypes...> operator()(ArgTypes&&...) const;
  };
  template<class T>
    reference_wrapper(T&) -> reference_wrapper<T>;
}

Class template std::unwrap_reference

namespace std {
  template<class T>
    struct unwrap_reference;
}

Class template std::unwrap_ref_decay

namespace std {
  template<class T>
    struct unwrap_ref_decay;
}

Class template std::plus

namespace std {
  template<class T = void> struct plus {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct plus<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) + std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::minus

namespace std {
  template<class T = void> struct minus {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct minus<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) - std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::multiplies

namespace std {
  template<class T = void> struct multiplies {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct multiplies<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) * std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::divides

namespace std {
  template<class T = void> struct divides {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct divides<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) / std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::modulus

namespace std {
  template<class T = void> struct modulus {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct modulus<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) % std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::negate

namespace std {
  template<class T = void> struct negate {
    constexpr T operator()(const T& x) const;
  };
 
  template<> struct negate<void> {
    template<class T> constexpr auto operator()(T&& t) const
      -> decltype(-std::forward<T>(t));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::equal_to

namespace std {
  template<class T = void> struct equal_to {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct equal_to<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) == std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::not_equal_to

namespace std {
  template<class T = void> struct not_equal_to {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct not_equal_to<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) != std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::greater

namespace std {
  template<class T = void> struct greater {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct greater<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) > std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::less

namespace std {
  template<class T = void> struct less {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct less<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) < std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::greater_equal

namespace std {
  template<class T = void> struct greater_equal {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct greater_equal<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) >= std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::less_equal

namespace std {
  template<class T = void> struct less_equal {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct less_equal<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) <= std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::equal_to

namespace std::ranges {
  struct equal_to {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::not_equal_to

namespace std::ranges {
  struct not_equal_to {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::greater

namespace std::ranges {
  struct greater {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::less

namespace std::ranges {
  struct less {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::greater_equal

namespace std::ranges {
  struct greater_equal {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class std::ranges::less_equal

namespace std::ranges {
  struct less_equal {
    template<class T, class U>
    constexpr bool operator()(T&& t, U&& u) const;
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::logical_and

namespace std {
  template<class T = void> struct logical_and {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct logical_and<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) && std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::logical_or

namespace std {
  template<class T = void> struct logical_or {
    constexpr bool operator()(const T& x, const T& y) const;
  };
 
  template<> struct logical_or<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) || std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::logical_not

namespace std {
  template<class T = void> struct logical_not {
    constexpr bool operator()(const T& x) const;
  };
 
  template<> struct logical_not<void> {
    template<class T> constexpr auto operator()(T&& t) const
      -> decltype(!std::forward<T>(t));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::bit_and

namespace std {
  template<class T = void> struct bit_and {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct bit_and<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) & std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::bit_or

namespace std {
  template<class T = void> struct bit_or {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct bit_or<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) | std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::bit_xor

namespace std {
  template<class T = void> struct bit_xor {
    constexpr T operator()(const T& x, const T& y) const;
  };
 
  template<> struct bit_xor<void> {
    template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
      -> decltype(std::forward<T>(t) ^ std::forward<U>(u));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::bit_not

namespace std {
  template<class T = void> struct bit_not {
    constexpr T operator()(const T& x) const;
  };
 
  template<> struct bit_not<void> {
    template<class T> constexpr auto operator()(T&& t) const
      -> decltype(~std::forward<T>(t));
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::identity

namespace std {
  struct identity {
    template<class T>
      constexpr T&& operator()(T&& t) const noexcept;
 
    using is_transparent = /* unspecified */;
  };
}

Class template std::is_bind_expression

namespace std {
  template<class T> struct is_bind_expression;
}

Class template std::is_placeholder

namespace std {
  template<class T> struct is_placeholder;
}

Class std::bad_function_call

namespace std {
  class bad_function_call : public exception {
  public:
    // see [exception] for the specification of the special member functions
    const char* what() const noexcept override;
  };
}

Class template std::function

namespace std {
  template<class> class function; // not defined
 
  template<class R, class... ArgTypes>
  class function<R(ArgTypes...)> {
  public:
    using result_type = R;
 
    // construct/copy/destroy
    function() noexcept;
    function(nullptr_t) noexcept;
    function(const function&);
    function(function&&) noexcept;
    template<class F> function(F);
 
    function& operator=(const function&);
    function& operator=(function&&);
    function& operator=(nullptr_t) noexcept;
    template<class F> function& operator=(F&&);
    template<class F> function& operator=(reference_wrapper<F>) noexcept;
 
    ~function();
 
    // function modifiers
    void swap(function&) noexcept;
 
    // function capacity
    explicit operator bool() const noexcept;
 
    // function invocation
    R operator()(ArgTypes...) const;
 
    // function target access
    const type_info& target_type() const noexcept;
    template<class T>       T* target() noexcept;
    template<class T> const T* target() const noexcept;
  };
 
  template<class R, class... ArgTypes>
    function(R(*)(ArgTypes...)) -> function<R(ArgTypes...)>;
 
  template<class F> function(F) -> function</* see description */>;
 
  // null pointer comparison functions
  template<class R, class... ArgTypes>
    bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;
 
  // specialized algorithms
  template<class R, class... ArgTypes>
    void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;
}

Class template std::move_only_function

namespace std {
  template<class... S> class move_only_function; // not defined
 
  template<class R, class... ArgTypes>
  class move_only_function<R(ArgTypes...) /*cv-ref*/ noexcept(/*noex*/)> {
  public:
    using result_type = R;
 
    // construct/move/destroy
    move_only_function() noexcept;
    move_only_function(nullptr_t) noexcept;
    move_only_function(move_only_function&&) noexcept;
    template<class F> move_only_function(F&&);
 
    template<class T, class... Args>
      explicit move_only_function(in_place_type_t<T>, Args&&...);
    template<class T, class U, class... Args>
      explicit move_only_function(in_place_type_t<T>, initializer_list<U>, Args&&...);
 
    move_only_function& operator=(move_only_function&&);
    move_only_function& operator=(nullptr_t) noexcept;
    template<class F> move_only_function& operator=(F&&);
 
    ~move_only_function();
 
    // move_only_function invocation
    explicit operator bool() const noexcept;
 
    R operator()(ArgTypes...) /*cv-ref*/ noexcept(/*noex*/);
 
    // move_only_function utility
    void swap(move_only_function&) noexcept;
 
    friend void swap(move_only_function&, move_only_function&) noexcept;
 
    friend bool operator==(const move_only_function&, nullptr_t) noexcept;
 
  private:
    template<class VT>
      static constexpr bool /*is-callable-from*/ = /* see description */; // exposition-only
  };
}

Class template std::default_searcher

namespace std {
  template<class ForwardIter1, class BinaryPredicate = equal_to<>>
    class default_searcher {
    public:
      constexpr default_searcher(ForwardIter1 pat_first, ForwardIter1 pat_last,
                                 BinaryPredicate pred = BinaryPredicate());
 
      template<class ForwardIter2>
        constexpr pair<ForwardIter2, ForwardIter2>
          operator()(ForwardIter2 first, ForwardIter2 last) const;
 
    private:
      ForwardIter1 pat_first_;            // exposition only
      ForwardIter1 pat_last_;             // exposition only
      BinaryPredicate pred_;              // exposition only
  };
}

Class template std::boyer_moore_searcher

namespace std {
  template<class RandomAccessIter1,
           class Hash = hash<typename iterator_traits<RandomAccessIter1>::value_type>,
           class BinaryPredicate = equal_to<>>
    class boyer_moore_searcher {
    public:
      boyer_moore_searcher(RandomAccessIter1 pat_first,
                           RandomAccessIter1 pat_last,
                           Hash hf = Hash(),
                           BinaryPredicate pred = BinaryPredicate());
 
      template<class RandomAccessIter2>
        pair<RandomAccessIter2, RandomAccessIter2>
          operator()(RandomAccessIter2 first, RandomAccessIter2 last) const;
 
    private:
      RandomAccessIter1 pat_first_;       // exposition only
      RandomAccessIter1 pat_last_;        // exposition only
      Hash hash_;                         // exposition only
      BinaryPredicate pred_;              // exposition only
    };
}

Class template std::boyer_moore_horspool_searcher

namespace std {
  template<class RandomAccessIter1,
           class Hash = hash<typename iterator_traits<RandomAccessIter1>::value_type>,
           class BinaryPredicate = equal_to<>>
    class boyer_moore_horspool_searcher {
    public:
      boyer_moore_horspool_searcher(RandomAccessIter1 pat_first,
                                    RandomAccessIter1 pat_last,
                                    Hash hf = Hash(),
                                    BinaryPredicate pred = BinaryPredicate());
 
      template<class RandomAccessIter2>
        pair<RandomAccessIter2, RandomAccessIter2>
          operator()(RandomAccessIter2 first, RandomAccessIter2 last) const;
 
    private:
      RandomAccessIter1 pat_first_;       // exposition only
      RandomAccessIter1 pat_last_;        // exposition only
      Hash hash_;                         // exposition only
      BinaryPredicate pred_;              // exposition only
  };
}

See also

std::hash specializations for library types