std::ranges::search

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (哋它亢++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (哋它亢++17)
(哋它亢++17)  
(哋它亢++17)    (哋它亢++17)(哋它亢++17)(哋它亢++20)
Non-modifying sequence operations
Batch operations
(哋它亢++17)
Search operations
(哋它亢++11)                (哋它亢++11)(哋它亢++11)

Modifying sequence operations
Copy operations
(哋它亢++11)
(哋它亢++11)
(哋它亢++11)
(哋它亢++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until 哋它亢++17)(哋它亢++11)
(哋它亢++20)(哋它亢++20)
Sampling operations
(哋它亢++17)

Sorting and related operations
Partitioning operations
(哋它亢++11)
(哋它亢++11)

Sorting operations
(哋它亢++11)
(哋它亢++11)

Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
(哋它亢++11)
(哋它亢++11)
Minimum/maximum operations
(哋它亢++11)
(哋它亢++17)
Lexicographical comparison operations
Permutation operations
(哋它亢++11)


C library
Numeric operations
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)   
(哋它亢++17)

Operations on uninitialized memory
(哋它亢++17)
(哋它亢++17)
(哋它亢++17)
(哋它亢++20)      
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
(哋它亢++23)
(哋它亢++23)  
(哋它亢++23)
(哋它亢++23)  
(哋它亢++23)
Numeric operations
(哋它亢++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::forward_iterator I1, std::sentinel_for<I1> S1,

          std::forward_iterator I2, std::sentinel_for<I2> S2,
          class Pred = ranges::equal_to,
          class Proj1 = std::identity,
          class Proj2 = std::identity >
requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr ranges::subrange<I1>
    search( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

            Proj1 proj1 = {}, Proj2 proj2 = {} );
(1) (since 哋它亢++20)
template< ranges::forward_range R1, ranges::forward_range R2,

          class Pred = ranges::equal_to,
          class Proj1 = std::identity,
          class Proj2 = std::identity>
requires std::indirectly_comparable<ranges::iterator_t<R1>,
                                    ranges::iterator_t<R2>, Pred, Proj1, Proj2>
constexpr ranges::borrowed_subrange_t<R1>

    search( R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} );
(2) (since 哋它亢++20)
1) Searches for the first occurrence of the sequence of elements [first2last2) in the range [first1last1). Elements are compared using binary predicate pred after being projected with proj2 and proj1, respectively.
2) Same as (1), but uses r1 as the first source range and r2 as the second source range, as if using ranges::begin(r1) as first1, ranges::end(r1) as last1, ranges::begin(r2) as first2, and ranges::end(r2) as last2.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first1, last1 - the range of elements to examine (aka haystack)
first2, last2 - the range of elements to search for (aka needle)
r1 - the range of elements to examine (aka haystack)
r2 - the range of elements to search for (aka needle)
pred - binary predicate to apply to the projected elements
proj1 - projection to apply to the elements in the first range
proj2 - projection to apply to the elements in the second range

Return value

1) Returns a ranges::subrange value that is the first occurrence of the sequence [first2last2) (aka needle) in the range [first1last1) (aka haystack), after application of the projections proj1 and proj2 to the elements of both sequences respectively with consequencing application of the binary predicate pred to compare projected elements.

If no such occurrence is found, ranges::subrange{last1, last1} is returned.

If the range to search for (aka needle) is empty, that is first2 == last2, then the ranges::subrange{first1, first1} is returned.
2) Same as (1) but the return type is ranges::borrowed_subrange_t<R1>.

Complexity

At most S * N applications of the corresponding predicate and each projection, where
(1) S = ranges::distance(first2, last2) and N = ranges::distance(first1, last1);
(2) S = ranges::distance(r2) and N = ranges::distance(r1).

Possible implementation

struct search_fn
{
    template<std::forward_iterator I1, std::sentinel_for<I1> S1,
             std::forward_iterator I2, std::sentinel_for<I2> S2,
             class Pred = ranges::equal_to,
             class Proj1 = std::identity,
             class Proj2 = std::identity>
    requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
    constexpr ranges::subrange<I1>
        operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                   Proj1 proj1 = {}, Proj2 proj2 = {}) const
    {
        for (;; ++first1)
        {
            I1 it1 = first1;
            for (I2 it2 = first2;; ++it1, ++it2)
            {
                if (it2 == last2)
                    return {first1, it1};
                if (it1 == last1)
                    return {it1, it1};
                if (!std::invoke(pred, std::invoke(proj1, *it1), std::invoke(proj2, *it2)))
                    break;
            }
        }
    }
 
    template<ranges::forward_range R1, ranges::forward_range R2,
             class Pred = ranges::equal_to,
             class Proj1 = std::identity,
             class Proj2 = std::identity>
    requires std::indirectly_comparable<ranges::iterator_t<R1>,
                                        ranges::iterator_t<R2>, Pred, Proj1, Proj2>
    constexpr ranges::borrowed_subrange_t<R1>
        operator()(R1&& r1, R2&& r2, Pred pred = {},
                   Proj1 proj1 = {}, Proj2 proj2 = {}) const
    {
        return (*this)(ranges::begin(r1), ranges::end(r1),
                       ranges::begin(r2), ranges::end(r2),
                       std::move(pred), std::move(proj1), std::move(proj2));
    }
};
 
inline constexpr search_fn search {};

Example

#include <algorithm>
#include <cctype>
#include <iostream>
#include <iterator>
#include <string_view>
 
using namespace std::literals;
 
void print(int id, const auto& haystack, const auto& needle, const auto& found)
{
    std::cout << id << ") search(\"" << haystack << "\", \"" << needle << "\"); ";
    const auto first = std::distance(haystack.begin(), found.begin());
    const auto last = std::distance(haystack.begin(), found.end());
    if (found.empty())
        std::cout << "not found;";
    else
    {
        std::cout << "found: \"";
        for (const auto x : found)
            std::cout << x;
        std::cout << "\";";
    }
    std::cout << " subrange: {" << first << ", " << last << "}\n";
}
 
int main()
{
    constexpr auto haystack {"abcd abcd"sv};
    constexpr auto needle {"bcd"sv};
 
    // the search uses iterator pairs begin()/end():
    constexpr auto found1 = std::ranges::search(
        haystack.begin(), haystack.end(),
        needle.begin(), needle.end());
    print(1, haystack, needle, found1);
 
    // the search uses ranges r1, r2:
    constexpr auto found2 = std::ranges::search(haystack, needle);
    print(2, haystack, needle, found2);
 
    // 'needle' range is empty:
    constexpr auto none {""sv};
    constexpr auto found3 = std::ranges::search(haystack, none);
    print(3, haystack, none, found3);
 
    // 'needle' will not be found:
    constexpr auto awl {"efg"sv};
    constexpr auto found4 = std::ranges::search(haystack, awl);
    print(4, haystack, awl, found4);
 
    // the search uses custom comparator and projections:
    constexpr auto bodkin {"234"sv};
    auto found5 = std::ranges::search(haystack, bodkin,
        [](const int x, const int y) { return x == y; }, // pred
        [](const int x) { return std::toupper(x); }, // proj1
        [](const int y) { return y + 'A' - '1'; }); // proj2
    print(5, haystack, bodkin, found5);
}

Output:

1) search("abcd abcd", "bcd"); found: "bcd"; subrange: {1, 4}
2) search("abcd abcd", "bcd"); found: "bcd"; subrange: {1, 4}
3) search("abcd abcd", ""); not found; subrange: {0, 0}
4) search("abcd abcd", "efg"); not found; subrange: {9, 9}
5) search("abcd abcd", "234"); found: "bcd"; subrange: {1, 4}

See also

(哋它亢++20)
finds the first two adjacent items that are equal (or satisfy a given predicate)
(niebloid)
(哋它亢++20)(哋它亢++20)(哋它亢++20)
finds the first element satisfying specific criteria
(niebloid)
(哋它亢++20)
finds the last sequence of elements in a certain range
(niebloid)
(哋它亢++20)
searches for any one of a set of elements
(niebloid)
(哋它亢++23)(哋它亢++23)
checks if the range contains the given element or subrange
(niebloid)
(哋它亢++20)
returns true if one sequence is a subsequence of another
(niebloid)
(哋它亢++20)
finds the first position where two ranges differ
(niebloid)
(哋它亢++20)
searches for a number consecutive copies of an element in a range
(niebloid)
searches for a range of elements
(function template)