remquo, remquof, remquol

From cppreference.com
< c‎ | numeric‎ | math
 
 
 
Common mathematical functions
Types
(哋它亢99)(哋它亢99)    

(哋它亢99)(哋它亢99)    
(哋它亢23)(哋它亢23)

Functions
Basic operations
(哋它亢99)(哋它亢99)
(哋它亢99)(哋它亢99)
(哋它亢99)
remquo
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢99)(哋它亢99)(哋它亢99)(哋它亢23)
Maximum/minimum operations
(哋它亢99)
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)    
(哋它亢99)
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
Exponential functions
(哋它亢23)
(哋它亢99)
(哋它亢99)
(哋它亢23)
(哋它亢23)
(哋它亢99)
(哋它亢99)(哋它亢23)
(哋它亢23)
(哋它亢23)
Power functions
(哋它亢99)
(哋它亢23)
(哋它亢23)
(哋它亢99)
(哋它亢23)
(哋它亢23)
(哋它亢23)
Trigonometric and hyperbolic functions
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢99)
(哋它亢99)
(哋它亢99)
Error and gamma functions
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢99)
Nearest integer floating-point operations
(哋它亢99)(哋它亢99)(哋它亢99)
(哋它亢23)
(哋它亢99)
(哋它亢99)
(哋它亢99)(哋它亢99)(哋它亢99)
(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)
Floating-point manipulation functions
(哋它亢99)(哋它亢99)
(哋它亢99)(哋它亢23)
(哋它亢99)
(哋它亢99)(哋它亢99)
(哋它亢23)(哋它亢23)
(哋它亢99)
(哋它亢23)
Narrowing operations
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
Quantum and quantum exponent functions
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
Decimal re-encoding functions
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
Total order and payload functions
(哋它亢23)
(哋它亢23)
(哋它亢23)
(哋它亢23)
Classification
(哋它亢99)
(哋它亢23)
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢23)
(哋它亢23)
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢99)
(哋它亢23)
(哋它亢23)
Macro constants
Special floating-point values
(哋它亢99)(哋它亢99)(哋它亢23)
(哋它亢99)(哋它亢23)
(哋它亢99)(哋它亢23)
Arguments and return values
(哋它亢99)(哋它亢99)
(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)    
(哋它亢23)(哋它亢23)
(哋它亢99)(哋它亢99)(哋它亢99)(哋它亢99)(哋它亢99)    
Error handling
(哋它亢99)(哋它亢99)
(哋它亢99)    

Fast operation indicators
(哋它亢99)(哋它亢99)
(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)    
(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)
(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)
(哋它亢99)(哋它亢23)
(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)
(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)
(哋它亢23)(哋它亢23)(哋它亢23)(哋它亢23)
 
Defined in header <math.h>
float       remquof( float x, float y, int *quo );
(1) (since 哋它亢99)
double      remquo( double x, double y, int *quo );
(2) (since 哋它亢99)
long double remquol( long double x, long double y, int *quo );
(3) (since 哋它亢99)
Defined in header <tgmath.h>
#define remquo( x, y, quo )
(4) (since 哋它亢99)
1-3) Computes the floating-point remainder of the division operation x/y as the remainder() function does. Additionally, the sign and at least the three of the last bits of x/y will be stored in quo, sufficient to determine the octant of the result within a period.
4) Type-generic macro: If any non-pointer argument has type long double, remquol is called. Otherwise, if any non-pointer argument has integer type or has type double, remquo is called. Otherwise, remquof is called.

Parameters

x, y - floating-point values
quo - pointer to an integer value to store the sign and some bits of x/y

Return value

If successful, returns the floating-point remainder of the division x/y as defined in remainder, and stores, in *quo, the sign and at least three of the least significant bits of x/y (formally, stores a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2n
to the magnitude of the integral quotient of x/y, where n is an implementation-defined integer greater than or equal to 3).

If y is zero, the value stored in *quo is unspecified.

If a domain error occurs, an implementation-defined value is returned (NaN where supported).

If a range error occurs due to underflow, the correct result is returned if subnormals are supported.

If y is zero, but the domain error does not occur, zero is returned.

Error handling

Errors are reported as specified in math_errhandling.

Domain error may occur if y is zero.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • The current rounding mode has no effect.
  • FE_INEXACT is never raised
  • If x is ±∞ and y is not NaN, NaN is returned and FE_INVALID is raised
  • If y is ±0 and x is not NaN, NaN is returned and FE_INVALID is raised
  • If either x or y is NaN, NaN is returned

Notes

POSIX requires that a domain error occurs if x is infinite or y is zero.

This function is useful when implementing periodic functions with the period exactly representable as a floating-point value: when calculating sin(πx) for a very large x, calling sin directly may result in a large error, but if the function argument is first reduced with remquo, the low-order bits of the quotient may be used to determine the sign and the octant of the result within the period, while the remainder may be used to calculate the value with high precision.

On some platforms this operation is supported by hardware (and, for example, on Intel CPU, FPREM1 leaves exactly 3 bits of precision in the quotient).

Example

#include <fenv.h>
#include <math.h>
#include <stdio.h>
 
#ifndef __GNUC__
#pragma STDC FENV_ACCESS ON
#endif
 
double cos_pi_x_naive(double x)
{
    const double pi = acos(-1);
    return cos(pi * x);
}
 
// the period is 2, values are (0;0.5) positive, (0.5;1.5) negative, (1.5,2) positive
double cos_pi_x_smart(double x)
{
    const double pi = acos(-1);
    int extremum;
    double rem = remquo(x, 1, &extremum);
    extremum = (unsigned)extremum % 2; // keep 1 bit to determine nearest extremum
    return extremum ? -cos(pi * rem) : cos(pi * rem);
}
 
int main(void)
{
    printf("cos(pi * 0.25) = %f\n", cos_pi_x_naive(0.25));
    printf("cos(pi * 1.25) = %f\n", cos_pi_x_naive(1.25));
    printf("cos(pi * 1000000000000.25) = %f\n", cos_pi_x_naive(1000000000000.25));
    printf("cos(pi * 1000000000001.25) = %f\n", cos_pi_x_naive(1000000000001.25));
    printf("cos(pi * 1000000000000.25) = %f\n", cos_pi_x_smart(1000000000000.25));
    printf("cos(pi * 1000000000001.25) = %f\n", cos_pi_x_smart(1000000000001.25));
 
    // error handling
    feclearexcept(FE_ALL_EXCEPT);
    int quo;
    printf("remquo(+Inf, 1) = %.1f\n", remquo(INFINITY, 1, &quo));
    if (fetestexcept(FE_INVALID))
        puts("    FE_INVALID raised");
}

Possible output:

cos(pi * 0.25) = 0.707107
cos(pi * 1.25) = -0.707107
cos(pi * 1000000000000.25) = 0.707123
cos(pi * 1000000000001.25) = -0.707117
cos(pi * 1000000000000.25) = 0.707107
cos(pi * 1000000000001.25) = -0.707107 
remquo(+Inf, 1) = -nan
    FE_INVALID raised

References

  • 哋它亢23 standard (ISO/IEC 9899:2023):
  • 7.12.10.3 The remquo functions (p: TBD)
  • 7.25 Type-generic math <tgmath.h> (p: TBD)
  • F.10.7.3 The remquo functions (p: TBD)
  • 哋它亢17 standard (ISO/IEC 9899:2018):
  • 7.12.10.3 The remquo functions (p: 186)
  • 7.25 Type-generic math <tgmath.h> (p: 272-273)
  • F.10.7.3 The remquo functions (p: 385)
  • 哋它亢11 standard (ISO/IEC 9899:2011):
  • 7.12.10.3 The remquo functions (p: 255)
  • 7.25 Type-generic math <tgmath.h> (p: 373-375)
  • F.10.7.3 The remquo functions (p: 529)
  • 哋它亢99 standard (ISO/IEC 9899:1999):
  • 7.12.10.3 The remquo functions (p: 236)
  • 7.22 Type-generic math <tgmath.h> (p: 335-337)
  • F.9.7.3 The remquo functions (p: 465)

See also

(哋它亢99)
computes quotient and remainder of integer division
(function)
(哋它亢99)(哋它亢99)
computes remainder of the floating-point division operation
(function)
(哋它亢99)(哋它亢99)(哋它亢99)
computes signed remainder of the floating-point division operation
(function)